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In the determination of single-step stress-relaxation behaviour, a finite time is required to reach the desired 
strain. As a result, an uncertainty is introduced into the observed behaviour at the early times. In the region of 
linear behaviour, an approximation has previously been derived which can be applied to shear stress- 
relaxation experiments. In the present work, approximate relations are derived which can be applied to 
uniaxial extension experiments in the region of non-linear behaviour. The derivations are based on the 
assumption that, under the set of strain histories considered, one can use the Bernstein, Kearsley and Zapas 
theory as a one-dimensional description. To demonstrate the validity of the approximate relations, we have 
obtained data on a linear low-density polyethylene copolymer under conditions of a varied step time and 
strains well into the region of non-linear behaviour. 

(Keywords: BKZ theory; linear low-density polyethylene; mechanical behaviour; non-linear hehaviour; stress relaxation; 
uniaxial extension) 

I N T R O D U C T I O N  

In single-step stress-relaxation experiments, a finite time 
is required during the application of the step to reach the 
desired strain. This introduces an uncertainty into the 
observed behaviour at the early times. Some years ago 
Zapas and Phillips 1 derived an approximation which can 
be applied to shear stress-relaxation experiments in the 
region of linear behaviour. Recently, Zapas, McKenna 
and Brenna 2 have derived corrections to the normal force 
response for the cone-and-plate geometry in single-step 
stress-relaxation experiments. For  certain materials such 
as semicrystaUine polymers, where some simplifying 
assumptions can be made, we have applied their idea to 
experiments involving simple extension at deformations 
which extend well into the region of non-linear behaviour. 
Approximate relations are derived which provide a 
correction to the behaviour observed at the early times. 
The derivations are based on the assumption that, for the 
type of strain histories considered here, one can use the 
Bernstein, Kearsley and Zapas (BKZ) theory a as a one- 
dimensional description. To show the validity of the 
approximate relations, we have obtained data on a linear 
low-density polyethylene copolymer at 26°C. The results 
are presented here. The theory shows that for this 
particular system one needs only one experiment in order 
to obtain a good approximation to the non-linear surface 
which describes the single-step stress-relaxation 
behaviour. This last statement must be qualified to the 
extent that, in practice, a larger set of experiments may be 
necessary if the experiments involve very large 
deformations. 

DERIVATION OF SOME APPROXIMATE 
RELATIONS 

We shall first consider an experiment in which the 
specimen, at time t = 0, is subjected to a strain history in 
uniaxial extension involving a ramp function for a time tl, 
followed by stress relaxation at constant strain. 

The conditions are: 

0<z~<t  I 2(z)= l + x r  (1) 

t l < z ~ t  Z(~C)---- 1 q-Ktl---- 1+~ 

where 2(0 is the stretch at time z, 2 ( 0 =  l(z)/lo, l(z) and lo 
being respectively the deformed length at time z and the 
initial undeformed length), x is the rate of deformation 
and e(z) is the strain at time ~. We shall assume, for this 
particular strain history, that the BKZ theory 3 is 
applicable and that the true stress can be represented by 
the equation: 

I i  

K 2 

0 

(2) 

K(Z,t) is the value of the stress-relaxation function at time 
t after the introduction of a stretch 2, K.(-,  -) is the partial 
derivative of K(;t,t) with respect to the second argument, 
and K(2 ,~ )  and K(1,t) are both zero. Equation (2) can be 
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rewritten in the form: 

K' 2 2 
o(t) =to i ( i +  x ( t_ , )  . , ) ( [1  + t¢(~_,)] 2-)d, (3) 

t - - t  1 

where K'(., .) now represents the partial derivative with 
respect to the first argument, and the variable change 
t - z  = ~ has been made. 

By application of the first theorem of the mean for 
integrals, equation (3) can be expressed as: 

2 
a(t)=CxtxK'( - 2 - -  , t - t x /2) ( ( l+~x/2)2)  (4a) \1 + xq /2 

In the region where t~> q :  

a(t)= CeK'( l + ~ ,  t - ta /2)( (  l +2-e/2)2 ) (4b) 

In equations (4a) and (4b), the constant C represents a 
correction term to the mean value of the integral. If e is 
small and if K(2,t) is expressed as 

then K(2,t) can be expanded using a Taylor series 
expansion to obtain the relation: 

where terms in e higher than first order have been 
dropped. Substitution of equation (5) into equation (4b) 
gives: 

a(t) = K(2,t - h/2)A(e,t - t 1/2) (6) 

where 

A(e,t_t,/2)=12+~/2 1 K((l + 8)/(1K(l+e,t_t,/2) + ~/2), t -h/2))]  

For the case in which the material behaviour is linear and 
is small, A(e,t-tx/2 ) approaches unity so that 

a(t)=K(2,t-q/2) 

which is equivalent to the relation obtained originally by 
Zapas and Phillips 1 . 

Now in order to calculate A(.,-) it is necessary to 
determine the value of K(',') at two different levels of 
strain, namely e and e/2. We shall next consider an 
experiment in which the following strain history applies: 

-oo<z~<0 2(v)= 1 

0 < ~ < t  2(z)= l + x z  

The assumption will now be made that the function K(2,t) 
can be represented by the relation: 

K(2, t) = q~(2)t-~ (7) 

We shall see later that this assumption is justified for the 

system under consideration here since the stress-- 
relaxation function can be represented on a log-log plot 
by a family of straight lines having the same slope a. 

The equivalent of equation (2) then becomes: 

t 

o(t)=K(2,t)+af dp'(.1+x~t_,)), -I-~ d, 
0 

(8) 

where ¢'(,) now represents the derivative of ¢(9 with 
respect to 4. 

In the region where K(2,t), at constant t, is a 
monotonically increasing function of 4, the integral in 
equation (8) is of the order of 10 ~o or less of the value of 
K(2,t). For small values of e: 

¢(1 2_ -'~-~ q~(1 + x¢) 
+~(t-~)] 

Inside the integral in equation (8), we shall further 
substitute for ¢(1 + x~), the expression: 

q~(1 + re) = a(~)~ = (9) 

where o(~) is the stress at any time ~ during the ramp 
portion of the deformation history. By substitution of 
equation (9) into equation (8) and once again the 
application of the theorem of the mean, the following 
expression is obtained: 

~b(1 + xt) = [a(t) - 2aa(t/2)] t = (lO) 

¢(1 +xt) then represents to a very good approximation 
the stress-relaxation function at a time of 1 s, since 

K(xt,1) -~ ¢(1 + xt) 

With a knowledge of the function 4)(4), equation (3) can 
be rewritten as: 

t 

f ( )( 2 [ l + K ( t - ¢ ) ]  ] a(t) = t¢2 ¢' 1 + l¢(t - ~) -- 2~d¢ 
t - - t l  

(II) 

If we next make the substitutions 0 = ¢/t 1 and R = t/tl, 
and divide both sides of equation (11) by 

K(2,t - q/2) = ¢(2)(t - q/2)-" 

then: 

~(t) 
K(2, t-q/2)  

R 

-¢ (2 )  (R-~)" ¢' l + e ( R - 0 )  [ l + e ( R - 0 ) ]  2 dO 
R - 1  

(12) 

The right-hand side of equation (12) now depends only 
upon R = t/q and e, or 

o(t)/K(2,t - tl/2) = A(e,R) 
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As an alternative approach to the more general 
treatment of the problem given above we can start 
directly from the condition that the strain e is small, in 
which case the starting equation is then 

t |  

a(t) = K(e,t) - f K .  (e(t) - e(z),t - z)dz 

0 

(13) 

A caret has been placed above the function K(e,t) to 
distinguish it from K(2,t) used earlier. By applying the 
same procedures used to obtain equation (4a) the 
following result is obtained: 

a(t) = tot 1 ~i'(tCtl/2,t - tl/2 ) (14) 

If we again assume that/((e, t)  can be represented as: 

K(e,t) = ~(e)t-" (15) 

then 

¢( t )/ g (e,t - t 1/2 ) = e~' (e/2)/~ (e) (16) 

where 

2 c~ In q~(e/2) ~(e/2) 
~'(e/2) - 

e t~ln(e/2) ~(e) 

Next, the equivalent expression to equation (8) is: 

! 

a(t) = ~;(e,t) + ctf ~b(x¢)(~ - 1 - =)de 

0 

(17) 

By substitution of the expression &(~)=q~(x~)~-" into 
equation (17) and a further application of the mean value 
theorem, the following expression for th(e) results: 

~(e) = [t~(t) - 2eta(t/2)] t ~ (18) 

Equation (18) is equivalent to equation (10). Finally, we 
can rewrite equation (13) in the form: 

l 

a( t )=x  f K'(x(q - t+¢) ,¢)  d~ 

t - - t l  

(19) 

Substitution of equation (15) into equation (19) then 
yields the relation: 

,~(t) 
g(~, t  - t 1/2) 

R 

~(~)"'-~' f 
R - 1  

2p ' (e (1 -R  +O))O- 'dO (20) 

where 0 = ~/tl  and R = t / q .  Equation (20) now substitutes 
for equation (12) where, as before, the right-hand side of 
the equation depends only on e and R. 

EXPERIMENTAL PROCEDURES 

The polymer used in this study was an ethylene-hexene 
copolymer containing approximately 4.5 butyl branches 

per 1000 carbon atoms*. Its weight-average molecular 
weight was determined to be 170400 with a standard 
deviation of 4.5 ~4. As received, the polymer contained 
0.075 ~ ,  by weight, of a cadmium sulphoselenide pigment 
and a commercial stabilizer package. The density of the 
as-received pellets was 0.933+0.001gcm -3 as de- 
termined using a density gradient column. 

Tensile specimens were prepared by compression 
moulding the pellets in a heated press. The press was 
preheated to 175°C at which time the mould was placed in 
the press for 10 min under light contact pressure. After 
10 min, the heat was turned off and the pressure was 
increased to 10MPa (1450psi). The press was then 
cooled under ambient conditions to a temperature below 
70°C before the mould was removed from the press. Each 
specimen was then shaped to its final dimensions using a 
milling machine. The specimen dimensions were 
nominally 1.5 cm in width, 0.5 cm in thickness and 15 cm 
in length. The density of the moulded bars was 
determined, by hydrostatic weighing, to be 
0.940+0.001 g cm -3. 

Stress-relaxation experiments were done using a servo- 
controlled hydraulic test machine operated in strain 
control. The test machine was controlled by a computer 
which was programmed to output to the specimen a 
deformation consisting of a constant-rate-of-strain ramp 
function followed by a period of stress relaxation at 
constant strain. During the ramp portion of the 
experiment, the stress and strain were determined at 
intervals corresponding to 0.05 times the total ramp time 
t 1. During the stress-relaxation segment of the 
experiment, data were collected starting at the 
termination of the ramp function, 0.1 s later, and at 
intervals corresponding to each power of 2 in time 
thereafter. The duration of the stress-relaxation segment 
was either 102.4 or 819.2 s. 

Three series of experiments were done in which the 
strain during the stress-relaxation portion of the 
experiment was 0.3 ~o, 3 ~o and 6~o. In each series, the 
ramp time t I was varied from a time as short as 0.1 s to 
one as long as 100 s. It was found that at the smallest 
strain (0.3 ~o) the same specimen could be used for the 
entire series of experiments. After the complete series of 
experiments, the first experiment was repeated, and no 
apparent difference in material behaviour was observed 
between the first and last test. We have also observed, in 
creep and recovery experiments done on the same 
material, that if the maximum strain during creep was 
kept below about 0.5 ~o the creep and recovery behaviour 
could be described quite well using only a simple 
superposition principle. No 'plasticity' term was 
necessary, as was found to be the case for other 
polyethylenes s-7. 

At the two larger strains (3 ~o and 6 ~o), it was found 
necessary to use a fresh specimen for each experiment. 
This introduces the possibility of specimen-to-specimen 
variability which can influence the stress-relaxation 
behaviour. In order to obtain a measure of the possible 
specimen-to-specimen variability, a given experiment was 
repeated several times using a fresh specimen each time. 
In terms of isochronal data, it was found that there 
occurred a variability of about 10 ~o from one specimen to 
* This polyethylene is available in pellet form through the office of 
Standard Reference Materials, National Institute of Standards and 
Technology, Gaithersburg, Maryland 20899. Its designation is 
SRM 1497 
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another. Therefore, in some cases it was found necessary 
to repeat the same experiment until a series of 
experiments, at different times t 1, was obtained in which 
the stress-relaxation behaviour at the long times was in 
good agreement. At the longest times, the correction 
required as a result of the finite step time becomes 
negligible. 

RESULTS AND DISCUSSION 

In a single-step stress-relaxation experiment the material, 
which has been at rest at all times up to time t=0 ,  is 
subjected to an 'instantaneous' step in strain, and the 
stress necessary to keep the specimen at that strain is 
measured as a function of time. In actual practice the 
strain cannot be applied in an instantaneous manner, but 
requires a finite time. For  some semicrystalline polymers, 
particularly at relatively high levels of strain, it may be 
desirable to reach the predetermined strain via a strain 
history involving a rather slow ramp function, the 
purpose being to avoid possible heating or even fracture 
of the specimen. In simple extension, when the 
deformations are small enough and the behaviour can be 
described by linear viscoelasticity, one can use the 
approximation given by Zapas and Phillips ~ . This special 
case was discussed earlier in this paper where, to a very 
good approximation, a(t)= K(A,t-ta/2).  In Fioure 1 we 

present data showing log a(t) plotted versus log( t - t l /2) ,  
obtained at various ramp rates, and where 2 = 1.003. The 
value of t 1 varied from 0.1 to 100 s. All of the data fall very 
close to those corresponding to the shortest ramp time 
(0.1 s), and are the correct values of the stress. In Fioure 2, 
a similar plot is shown for the experiments done at 
stretches of 1.03 and 1.06. At these two much larger 
stretches, the curves approach one another only at times t 
greater than 5q. It will be shown later that, for these 
values of 2, the behaviour is quite non-linear. It was 
shown earlier (equation (6) )  that the relation 
t~(t) = K ( 2 , t -  tx/2)A(e,t- tl/2 ) should describe the data 
quite well, where A( ' , . )  is a correction factor which 
depends on e and t/tx. In general, A( . , . )  cannot be 
estimated without a reasonable knowledge of the non- 
linear surface of K( . , "  ) for values of the stretch smaller 
than the final value of 2. For the case in which K(.  ," ) can 
be represented as the product of a function of 2 and a 
function of time of the type ~b(2)t-~, the problem becomes 
manageable to the extent that one can obtain a 
reasonably good approximation for the function ~b(2) 
from the values of the stress during the ramp function. 
The derivation of this approximation was also given in an 
earlier section. The approximate value of the function 
~b(2) was given by equation (10) as: 

¢(1  + x t )  = [G(t)  - 20~a(t/2)] r' 

10 

~E 
v 

W 
n- 

U) l . 0  

...... o E = 0 . 0 0 3  

I I I I t i l l  I I I I I t i l l  I I I I I l i l t  

10 4 10 ° 101 10 2 

t - t i 1 2  (s) 

Figere I Log(stress) versus log( t -  t:/2) from stress-relaxation experiments. The step time t: was 
varied as follows: (O) 0.1 s; (+)  0.3 s; (©) 1.0 s; (A) 3.0 s; (~7) 10 s; ([]) 30 s; and ( x ) 100 s 
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Figure 2 Log(stress) versus log ( t -q /2 )  from stress relaxation. Symbols have the same meaning 
as in Figure I 
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Here ~ represents the slope of the stress-relaxation curve 5 0  
and  in our  experiments  was found to be -0 .0987 .  

By having a good knowledge of the funct ion ~b(2), one 
can calculate the funct ion A(" ,- ). In  fact, for a given value 
of the funct ion ~b(2), A(" ," ) can be normal ized  to obta in  
the form A(e, t/t1). It was shown earlier that  the ratio 
a( t ) /K(2 , t -q /2 )  for values of t greater than  t 1 was a 
funct ion of R = t/t~ and  e only. Since the t ime dependence 10 
of K(2,t) can be represented by a power-law funct ion,  it is 
easy to show that  the ratio of a t (R) to a2(R ) is a cons tant ,  
where a l (R  ) and  az(R) are the stresses dur ing  the stress 
relaxation after ramp deformat ion  histories at two 
different ramp rates to the same value of e and  with the 
same value of R. Several examples are shown in Table 1 
for the case where ~, = 1.03. F r o m  Table 1, it can be seen 
that  the product  of R= and  al(R)/a2(R ) is in all cases unity.  
Similar results were also ob ta ined  for the case where 
2 = 1.06. The calculated cons tan t  is the ratio of the two 
different times ta raised to the power ct. By applying all of 
the above development ,  we were able to ob ta in  the 
funct ion ~b(2) for different values of the strain e and  the 
results are shown in Figure 3. The triangles represent the 
1.0 s isochronal  values from experiments  in which t 1 was 
0.1 s and  the circles represent data  calculated using 
equat ion  (10). It  can be seen that  the agreement  is indeed 
very good. 

F r o m  equat ion  (12), we were able to calculate the table 
of values for A(e,R) shown in Table 2. A m a x i m u m  
correct ion of about  10 ~o occurs for the sample stretched 
to 2 =  1.06. A(e,R) approaches  uni ty  at smaller and  1.005 
smaller values of R as the stretch 2 becomes smaller. F o r  1.01 
values of R greater than  5, A(e,R) is nearly unity.  By 1.05 
applying the above corrections,  we obta ined  the plot 1.15 1.20 
shown in Figure 4, where log[a(t)/A(e,R)] is plotted 1.50 
versus log(t- t~/2).  At the strain of e = 0 . 0 3  the points  2.o 
from the different experiments fall on the same straight 3.o 
line, at least within the range of times for which we have 5.o 10.0 
data.  This  type of behav iour  was observed previously by 
Becker and  Rademacher  s who found that  on log- log 
coordinates  the stress-relaxation behaviour  of 

1 I I I I I I I I I  I 1 I I I I I 

.0 01 .01 0.1 
(~ - I )  

Figure 3 One second isochronal values of the function q~(2) from stress- 
relaxation experiments in which the step time was 0.1 s. Triangles, 
values determined from experiments in which the stretch ~ was varied 
from 1.003 to 1.08. Circles, values calculated using equation (10) 

Table 2 Values of the correction factor A(e,R) "'~ as a function of R for 
different levels of strain 

Strain e 

R 0.003 0.006 0.010 0.030 0.060 

1.040 1.046 1.056 1.073 1.096 
1.038 1.043 1.054 1.070 1.092 
1.030 1.033 1.042 1.052 1.069 
1.020 1.021 1.028 1.035 1.047 
1.017 1.018 1.025 1.030 1.042 
1.009 1.009 1.013 1.017 1.021 
1.005 1.005 1.008 1.0t0 1.019 
1.002 1.003 1.004 1.006 1.019 
1.0O 1 1.001 1.002 1.003 1.016 
1.0Ol 1.0Ol 1.001 1.000 1.013 

Q Calculated using equation (12) 
bR=t/tl 

Table 1 Table of values of at,(R) and the ratio cq(R)/a2(R ) for a series of experiments in which 2 = 1.03 "-e 

a,,(R) (MPa) al(R)/a2(R ) 

R t~=l 5 10 30 10o 1/5 1/10 10/30 10/10O 

1.01 12.50 11.15 10.15 1.09 1.23 
1.02 13.26 12.41 11.10 10.03 1.12 1.24 
1.04 13.09 12.23 10.90 9.87 1.12 1.24 
1.07 12.90 12.07 10.75 9.70 1.12 1.24 
1.10 14.89 12.75 11.93 10.60 9.58 1.16 1.25 l. 12 1.24 
1.15 14.62 12.49 11.73 10.40 9.38 1.17 1.24 1,13 1.25 
1.20 14.40 12.32 11.55 10.24 9.24 1.17 1.25 1.13 1.25 
1.40 13.92 11.84 11.05 9.85 8.87 1.18 1.26 1,12 1.25 
1.70 13.40 11.30 10.61 9.47 8.51 1.19 1.26 1.12 1.25 
2.0 13.10 11.10 10.40 9.22 1.18 1.26 1.13 
2.5 12.68 10.70 10.0O 8.91 1.18 1.27 1.12 
3.0 12.38 10.40 9.70 8.70 1.19 1.28 1.12 
4.0 11.19 10.0O 9.40 8.46 1.12 1.27 1.11 
6.0 11.20 9.51 8.95 8.25 1.16 1.23 1.08 

Average ratio 1.17 1.26 1.12 1.24 
[tr~(R)/a2(R)]R = 1.00 1.01 1.01 0.99 

Q t t is the duration of the ramp deformation history 
bR=t/tl 
c %(R) is the stress during the stress-relaxation portion of the experiment after a ramp deformation history of duration q 
da~(R)N2(R) is the ratio of two stresses obtained from different experiments in which the strain e and R were the same, but the time tt was different as 
indicated by the column headings 
"~ = -0.0987 (slope of the stress-relaxation curve plotted on log-log paper) 
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( t  - t 1 /2  ) 
Log[tr(t)/A(e,R)] versus log(t-t l /2 ). A(e,R) was calculated using equation (12) 

polyethylenes having widely different crystallinities could 
be represented by a similar power-law function. 

At the largest strain (e = 0.06) the values do not all quite 
fall on the line corresponding to 1 s. The departure 
appears to become greater the longer the step time tl. It is 
possible that sample-to-sample variability may account 
for some of the differences, in which case the various 
values will not fall on the same line even at very long 
times. However, it is more l ikdy that in the form in which 
they were used the approximate relations undercorrect 
the values at very large strains and cannot fully account 
for the non-linearity in the system behaviour. We do 
know that at very large strains the BKZ theory does not 
fully describe the behaviour observed in materials of this 
type. 

While a step time of 100 s may appear unrealistic, the 
usefulness of the procedure which we have just outlined 
can be demonstrated in the following situation where we 
attempted to obtain the stress-relaxation behaviour of a 
specimen extended to a stretch of 1.12. We were successful 
only when the value of t I was greater than 30 s. For a 
ramp time of 30 s or shorter the specimen necked and 
fractured before reaching the desired stretch. For some 
classes of polymeric materials it may be desirable to use a 
relatively slow step time in order to achieve even relatively 
small strains. 

In summary, a set of approximate relations is 
developed for the analysis of single-step stress-relaxation 

data obtained in uniaxial extension and involving a finite 
step time. The derivations are based on the assumption 
that, for the set of strain histories considered, the 
predictions of the BKZ theory are applicable. We have 
demonstrated that the relations, while approximate, 
provide a very good description of the material response 
even well into the region of non-linear behaviour. The 
procedures outlined should be particularly useful in 
instances where it may be desirable to reach the 
predetermined strain via a slower ramp function, the 
purpose being to avoid possible rapid heating or even 
fracture of the specimen during the application of the step 
in strain. 
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